- Algebra
- Arithmetic
- Whole Numbers
- Numbers
- Types of Numbers
- Odd and Even Numbers
- Prime & Composite Numbers
- Sieve of Eratosthenes
- Number Properties
- Commutative Property
- Associative Property
- Identity Property
- Distributive Property
- Order of Operations
- Rounding Numbers
- Absolute Value
- Number Sequences
- Factors & Multiples
- Prime Factorization
- Greatest Common Factor
- Least Common Multiple
- Squares & Perfect Squares
- Square Roots
- Squares & Square Roots
- Simplifying Square Roots
- Simplifying Radicals
- Radicals that have Fractions
- Multiplying Radicals

- Integers
- Fractions
- Introducing Fractions
- Converting Fractions
- Comparing Fractions
- Ordering Fractions
- Equivalent Fractions
- Reducing Fractions
- Adding Fractions
- Subtracting Fractions
- Multiplying Fractions
- Reciprocals
- Dividing Fractions
- Adding Mixed Numbers
- Subtracting Mixed Numbers
- Multiplying Mixed Numbers
- Dividing Mixed Numbers
- Complex Fractions
- Fractions to Decimals

- Decimals
- Exponents
- Percent
- Scientific Notation
- Proportions
- Equality
- Properties of equality
- Addition property of equality
- Transitive property of equality
- Subtraction property of equality
- Multiplication property of equality
- Division property of equality
- Symmetric property of equality
- Reflexive property of equality
- Substitution property of equality
- Distributive property of equality

- Commercial Math

- Calculus
- Differential Calculus
- Limits calculus
- Mean value theorem
- L’Hôpital’s rule
- Newton’s method
- Derivative calculus
- Power rule
- Sum rule
- Difference rule
- Product rule
- Quotient rule
- Chain rule
- Derivative rules
- Trigonometric derivatives
- Inverse trig derivatives
- Trigonometric substitution
- Derivative of arctan
- Derivative of secx
- Derivative of csc
- Derivative of cotx
- Exponential derivative
- Derivative of ln
- Implicit differentiation
- Critical numbers
- Derivative test
- Concavity calculus
- Related rates
- Curve sketching
- Asymptote
- Hyperbolic functions
- Absolute maximum
- Absolute minimum

- Integral Calculus
- Fundamental theorem of calculus
- Approximating integrals
- Riemann sum
- Integral properties
- Antiderivative
- Integral calculus
- Improper integrals
- Integration by parts
- Partial fractions
- Area under the curve
- Area between two curves
- Center of mass
- Work calculus
- Integrating exponential functions
- Integration of hyperbolic functions
- Integrals of inverse trig functions
- Disk method
- Washer method
- Shell method

- Sequences, Series & Tests
- Parametric Curves & Polar Coordinates
- Multivariable Calculus
- 3d coordinate system
- Vector calculus
- Vectors equation of a line
- Equation of a plane
- Intersection of line and plane
- Quadric surfaces
- Spherical coordinates
- Cylindrical coordinates
- Vector function
- Derivatives of vectors
- Length of a vector
- Partial derivatives
- Tangent plane
- Directional derivative
- Lagrange multipliers
- Double integrals
- Iterated integral
- Double integrals in polar coordinates
- Triple integral
- Change of variables in multiple integrals
- Vector fields
- Line integral
- Fundamental theorem for line integrals
- Green’s theorem
- Curl vector field
- Surface integral
- Divergence of a vector field
- Differential equations
- Exact equations
- Integrating factor
- First order linear differential equation
- Second order homogeneous differential equation
- Non homogeneous differential equation
- Homogeneous differential equation
- Characteristic equations
- Laplace transform
- Inverse laplace transform
- Dirac delta function

- Differential Calculus
- Matrices
- Pre-Calculus
- Lines & Planes
- Functions
- Domain of a function
- Transformation Of Graph
- Polynomials
- Graphs of rational functions
- Limits of a function
- Complex Numbers
- Exponential Function
- Logarithmic Function
- Sequences
- Conic Sections
- Series
- Mathematical induction
- Probability
- Advanced Trigonometry
- Vectors
- Polar coordinates

- Probability
- Geometry
- Angles
- Triangles
- Types of Triangles
- Special Right Triangles
- 3 4 5 Triangle
- 45 45 90 Triangle
- 30 60 90 Triangle
- Area of Triangle
- Pythagorean Theorem
- Pythagorean Triples
- Congruent Triangles
- Hypotenuse Leg (HL)
- Similar Triangles
- Triangle Inequality
- Triangle Sum Theorem
- Exterior Angle Theorem
- Angles of a Triangle
- Law of Sines or Sine Rule
- Law of Cosines or Cosine Rule

- Polygons
- Circles
- Circle Theorems
- Solid Geometry
- Volume of Cubes
- Volume of Rectangular Prisms
- Volume of Prisms
- Volume of Cylinders
- Volume of Spheres
- Volume of Cones
- Volume of Pyramids
- Volume of Solids
- Surface Area of a Cube
- Surface Area of a Cuboid
- Surface Area of a Prism
- Surface Area of a Cylinder
- Surface Area of a Cone
- Surface Area of a Sphere
- Surface Area of a Pyramid
- Geometric Nets
- Surface Area of Solids

- Coordinate Geometry and Graphs
- Coordinate Geometry
- Coordinate Plane
- Slope of a Line
- Equation of a Line
- Forms of Linear Equations
- Slopes of Parallel and Perpendicular Lines
- Graphing Linear Equations
- Midpoint Formula
- Distance Formula
- Graphing Inequalities
- Linear Programming
- Graphing Quadratic Functions
- Graphing Cubic Functions
- Graphing Exponential Functions
- Graphing Reciprocal Functions

- Geometric Constructions
- Geometric Construction
- Construct a Line Segment
- Construct Perpendicular Bisector
- Construct a Perpendicular Line
- Construct Parallel Lines
- Construct a 60° Angle
- Construct an Angle Bisector
- Construct a 30° Angle
- Construct a 45° Angle
- Construct a Triangle
- Construct a Parallelogram
- Construct a Square
- Construct a Rectangle
- Locus of a Moving Point

- Geometric Transformations

- Sets & Set Theory
- Statistics
- Collecting and Summarizing Data
- Common Ways to Describe Data
- Different Ways to Represent Data
- Frequency Tables
- Cumulative Frequency
- Advance Statistics
- Sample mean
- Population mean
- Sample variance
- Standard deviation
- Random variable
- Probability density function
- Binomial distribution
- Expected value
- Poisson distribution
- Normal distribution
- Bernoulli distribution
- Z-score
- Bayes theorem
- Normal probability plot
- Chi square
- Anova test
- Central limit theorem
- Sampling distribution
- Logistic equation
- Chebyshev’s theorem

- Difference
- Correlation Coefficient
- Tautology
- Relative Frequency
- Frequency Distribution
- Dot Plot
- Сonditional Statement
- Converse Statement
- Law of Syllogism
- Counterexample
- Least Squares
- Law of Detachment
- Scatter Plot
- Linear Graph
- Arithmetic Mean
- Measures of Central Tendency
- Discrete Data
- Weighted Average
- Summary Statistics
- Interquartile Range
- Categorical Data

- Trigonometry
- Vectors
- Multiplication Charts
- Time Table
- 2 times table
- 3 times table
- 4 times table
- 5 times table
- 6 times table
- 7 times table
- 8 times table
- 9 times table
- 10 times table
- 11 times table
- 12 times table
- 13 times table
- 14 times table
- 15 times table
- 16 times table
- 17 times table
- 18 times table
- 19 times table
- 20 times table
- 21 times table
- 22 times table
- 23 times table
- 24 times table

- Time Table

# Locus of a Moving Point – Explanation and Examples

*The locus of a moving point is a path that a given point traces out when it is moving under certain constraints.*

Certain parameters cause the locus to form geometric objects with notable properties.

In this section, we will go over:

**What is a Locus in Geometry?****Locus Theorems**

## What is a Locus in Geometry?

Imagine you grabbing a crayon, setting the tip on a piece of paper, and then moving the tip all over the paper. You will trace out a line by doing this, and you will be able to tell quickly where the tip of the crayon has been.

Now, call the paper a plane and the tip a point. Then the locus equivalent in this thought experiment is the colored line traced out by the crayon.

Though the term “locus” (and its plural counterpart, “loci”) is a bit old-fashioned, it essentially refers to a set of points where a point with certain constraints may be found. Using locus terminology is another way of defining certain geometric objects.

In more modern times, mathematicians will more often refer to infinite sets meeting certain criteria than the locus of a moving point meeting certain criteria.

## Locus Theorems

There are six well-known locus theorems in geometry. Each describes a constraint for the movement of a point and identifies the locus’s geometric object.

### Locus Theorem 1

The first locus theorem gives us a point, A, moving with the constraint that it is always a fixed distance $r$ from a point B.

This point will trace out a circle. That is, the locus of such a point is a circle.

By definition, a circle is the set of all points equidistant from another point. Therefore, it makes sense that the locus of A is also a circle.

### Locus Theorem 2

The second locus theorem gives us a point, A, that is always a fixed distance, $r$, from a line, $m$.

The locus is the path of A is two lines on either side of $m$, each a distance of $r$ from the original line. These two lines will both be parallel to $m$.

### Locus Theorem 3

The third locus theorem gives us a point, A, that is always the same distance from two other points, B and C.

This point will trace out a path that is a line perpendicular to B and C and divides a line segment connecting the two in half. That is, the locus of A is a perpendicular bisector for the line segment BC.

### Locus Theorem 4

Suppose we have a point A that is always equidistant from two parallel lines, $m$ and $n$. The fourth locus theorem tells us that the path traced out by A is a third parallel line, $l$ that is parallel to both $m$ and $n$ and is directly halfway between the two.

### Locus Theorem 5

Given an angle, ABC, the locus of a point D that is always equidistant from the lines BA and BC and lies inside the angle is the angle bisector of ABC.

### Locus Theorem 6

The sixth locus theorem is essentially an extension of the fifth locus theorem. If we have two lines, $m$ and $n$ that intersect at a point A, the locus of a point B that is always equidistant from $m$ and $n$ is a pair of perpendicular lines that intersect at A and bisect the four angles formed by $m$ and $n$.

## Examples

This section will go over common problems related to the loci of points and their step-by-step solutions.

### Example 1

Suppose C is a moving point that is always equidistant from two points, A and B. Then, suppose E is a moving point that is always equidistant from B and another point D. If A, B, and D lie on a line, what is the relationship between the loci of C and E?

### Example 1 Solution

First, we construct a line with the points A, B, and D on it. We’ll space them so that A and D are different distances from B.

We need to construct a point C that is always the same distance from A and B. The point on the line that satisfies that constraint is the center of segment AB. As we know from the third locus theorem, point C will trace out a perpendicular bisector for AB.

Likewise, we can consider the point E that is always equidistant from B and D. From the third locus theorem, we know that E will trace out a perpendicular bisector for BD.

Since A, B, and D lie on a straight line, the two perpendicular bisectors will be parallel to each other. That is, the loci for C and E will be parallel lines.

### Example 2

Construct the locus of a moving point A that is always equidistant from two parallel lines $m$ and $n$.

### Example 2 Solution

The locus of this point will be a line that is parallel to $m$ and $n$, and the line of shortest distance from any point on this line to $m$ or $n$ will be the same length.

To construct this line, we first need to construct a line perpendicular to $m$, which will also be perpendicular to $n$.

Now, we can construct a perpendicular bisector for the segment that connects $m$ and $n$. Since this line is perpendicular to a line perpendicular to $m$ and $n$, this line will be parallel to the two original lines.

Since this line bisects and segment perpendicular to $m$ that intersects $n$, it is always equidistant from the two lines, as required.

### Example 3

Given the circle, $c$, find the locus of a moving point A that is always at a distance $k$ from $c$, where $k$ is less than $r$, the circle’s radius.

### Example 3 Solution

Recall from the second locus theorem that the locus of a point that is always equidistant from a line traces out two lines parallel to the original. Each will be on the opposite side of the line and be at the same distance from it.

We can apply a similar concept here. First, outside the circle, we will have another circle with the same center as the first and a radius $r$+$k$. Thus, every point on this larger circle will have a distance $k$ from the original circle.

We will also construct a circle inside the original circle with the same center and a radius of $r$-$k$, which we know is greater than zero.

### Example 4

Given the curved line $m$, shown, construct the locus of a moving point that is always equidistant from $m$.

### Example 4 Solution

First, we need to construct a line perpendicular to $m$ at point A. Recall that we do this by connecting A to any point on $m$. Then, we copy the angle that this new line makes with $m$ and construct a line that goes through A and makes the two congruent angles alternate angles.

However, recall from locus theorem 2 that the locus will actually be two lines on opposite sides of the line $m$.

Now, we need to construct a line perpendicular to the line $n$. Label the intersection of the perpendicular line and $m$ as D.

Now, construct a circle with center D and radius DA. Call the second intersection of the perpendicular line and this circle E.

Finally, we create a second line parallel to $m$ that goes through point E. We can do this as before, or we can create a line perpendicular to the perpendicular line at point E.

### Example 5

Find the locus of a moving point A that is always a distance $k$ from one of the two circles, $c$ and $d$, and A is always outside the circles.